Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{C} 2-\mathrm{Cl}$	1.525 (8)	C6- Cl	1.574 (7)
$\mathrm{C} 8-\mathrm{Cl}$	1.548 (6)	$\mathrm{C} 3-\mathrm{C} 2$	1.521 (8)
C4-C3	1.537 (8)	C5-C4	1.537 (8)
C6-C5	1.554 (8)	C7-C6	1.522 (7)
C8-C7	1.533 (7)	O21-C7	1.421 (6)
C22-C7	1.455 (8)	N9-C8	1.476 (6)
C10-N9	1.474 (7)	S11-N9	1.646 (4)
C19-C14	1.378 (7)	O12-S11	1.438 (4)
$\mathrm{Cl} 7-\mathrm{Cl} 6$	1.388 (8)	O13-S11	1.434 (4)
C17-C18	1.402 (8)	C14-S11	1.776 (5)
C20-C17	1.515 (8)	C15-C14	1.389 (7)
C22-O21	1.457 (8)	C16-Cl5	1.378 (8)
		C19-C18	1.391 (8)
C6- $\mathrm{Cl}-\mathrm{C} 2$	118.9 (5)	C8- $\mathrm{C} 1-\mathrm{C} 2$	119.9 (5)
C8-Cl-C6	87.2 (4)	C3-C2-C1	113.3 (5)
C4-C3-C2	110.1 (6)	C5--C4-C3	109.5 (5)
C6-C5-C4	111.8 (5)	C5--C6-Cl	112.5 (5)
C7-C6-Cl	86.8 (4)	C7-C6-C5	112.6 (5)
C8-C7-C6	89.6 (4)	O21-C7-C6	126.5 (5)
$\mathrm{O} 21-\mathrm{C} 7-\mathrm{C} 8$	124.9 (5)	C22-C7-C6	129.0 (6)
C22-C7-C8	130.2 (5)	C22-C7-021	60.9 (4)
C7-C8-C1	87.4 (4)	N9-C8-Cl	122.8 (4)
N9-C8-C7	117.8 (4)	C10-N9-C8	118.1 (4)
S11-N9-C8	117.9 (3)	S11-N9-C10	116.9 (4)
O12-S11-N9	106.6 (2)	O13-S11-N9	106.5 (2)
O13-S11-O12	120.4 (3)	C14-S11-N9	107.0 (2)
C14-S11-O12	108.3 (3)	C14-S11-O13	107.5 (3)
C15-C14-S11	119.4 (5)	C19-C14-S11	119.9 (4)
C19-C14-Cl5	120.7 (5)	$\mathrm{Cl} 6-\mathrm{Cl} 5-\mathrm{Cl} 4$	119.1 (6)
C17-C16-Cl5	121.9 (6)	C18-C17-C16	117.9 (6)
$\mathrm{C} 20-\mathrm{C17-C16}$	121.4 (6)	C20-C17-C18	120.7 (6)
C19-C18-C17	120.8 (6)	C18-C19-C14	119.6 (5)
$\mathrm{C} 22-\mathrm{O} 21-\mathrm{C} 7$	60.7 (4)	$\mathrm{O} 21-\mathrm{C} 22-\mathrm{C} 7$	58.4 (4)

The atomic parameters are given in Table 1.* Fig. 1 is a stereoscopic view of the molecule showing the numbering of the atoms (PLUTO; Motherwell \& Clegg, 1978). Bond distances and angles are given in Table 2.

[^0]

Fig. 1. Stereoscopic view of the molecule with atom numbering.
Related literature. In a preceding paper we determined the structure of 8 -(N-methyl- N - p-tolylsulfonylamino) bicyclo[4.2.0]octan-7-one (Tinant, Declercq \& Gobeaux, 1990). In this compound the configuration at C 8 is also exo and the puckering in the cyclobutane ring is $31(1)$ and $29(1)^{\circ}$ in the two independent molecules, respectively.

JFD and JPD thank the Fonds de Développement Scientifique Catholic University of Louvain for its financial support.

References

Corey, E. J. \& Chaykovsky, M. (1965). J. Am. Chem. Soc. 87, 1353-1364.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Tinant, B., Declerce, J.-P. \& Gobeaux, B. (1990). Acta Cryst. C46, 1944-1946.

Acta Cryst. (1993). C49, 562-565

Structure of the p-Nitrobenzoate Ester of 3-endo-(p-Methoxybenzyl)isoborneol

By Il-Hwan Suh,* Byung-Ick Seo, David E. Lewis* and William P. Jensen
Department of Chemistry, South Dakota State University, Brookings, SD 57007, USA

and Robert A. Jacobson
Ames Laboratory, USDOE and Department of Chemistry, Iowa State University, Ames IA 50011, USA
(Received 28 February 1992; accepted 21 July 1992)

Abstract

R, 2 R, 3 S, 4 R)\)-3-[(4-Methoxyphenyl)-methyl]-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl 4-nitro-

[^1]0108-2701/93/030562-04\$06.00
benzoate, $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{5}, M_{r}=423.5$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=12.104$ (3) $, \quad b=26.712(5), \quad c=$ 7.138 (1) $\AA, \quad V=2308.0(8) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.22 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=0.8 \mathrm{~cm}^{-1}$,
$F(000)=904$, room temperature, $R=0.065$ for 1421 observed out of 1770 reflections. Maximum deviations from planarity of the two aromatic rings are $0.018 \AA$ each; the dihedral angle formed by the two rings is $29.5(3)^{\circ}$, with a distance of closest approach of 3.827 (8) \AA. The X-ray structure determination establishes the orientation of the aromatic rings and confirms the steric shielding of the Si face of the ester carbonyl group.

Experimental. Bouveault-Blanc reduction (House, 1972) of 3 -(p-methoxybenzylidene)camphor (1) gives three stereoisomeric alcohols (2) which were converted to their p-nitrobenzoates. Fractional crystallization of the 3 -endo-(p-methoxybenzyl)isobornyl p-nitrobenzoate from the mixture of esters gave the desired compound (3) stereochemically homogeneous (Seo, Wall, Lee, Buttrum \& Lewis, 1993; Wall, 1990).

A colorless crystal of (3) was obtained by slow evaporation of ethanol. Crystal size was $0.4 \times 0.4 \times$ 0.5 mm . Space group was determined from systematic absences $h 00$ with h odd, $0 k 0$ with k odd and $00 l$ with l odd. Cell dimensions were obtained from setting angles of nine reflections with $10<\theta<12^{\circ}$. Data were collected on a Rigaku AFC- $6 R$ diffractometer, with Mo $K \alpha$ radiation and graphite monochromator; scan technique was $\omega-2 \theta$. One octant of reflections having $2<2 \theta<50^{\circ}$, corresponding to $h 0$ to $14, k 0$ to $31, l 0$ to 8 , was collected. Of 1770 reflections collected, 1421 with $I>2.5 \sigma(I)$ were observed and used in the structure solution. Intensities of three standard reflections $(0, \overline{14}, 0,124$ and 600), monitored every 6000 s , showed no systematic variation; no decay correction was applied. Data were corrected for Lorentz and polarization effects, but not for absorption. The structure was solved by
direct methods using the PC version of NRCVAX (Gabe, Le Page, Charland, Lee \& White, 1989). The E map revealed most of the non- H atoms; the handedness corresponded to the known natural enantiomorph. All the remaining atoms except the methyl H atoms were revealed by difference map, positions of one H atom of each methyl group were obtained by difference map and the positions of the remaining H atoms were calculated. Refinement was by full-matrix least-squares methods initially with isotropic thermal parameters for all atoms, and then with anisotropic thermal parameters for all atoms. In the final rounds of calculations, a secondaryextinction coefficient of $0.020(1) \mathrm{mm}$ was applied and the positions of the H atoms were fixed on geometric grounds ($\mathrm{C}-\mathrm{H} 1.08 \AA$). H atoms were assigned the same anisotropic thermal parameters as the corresponding C atoms; H -atom anisotropic thermal parameters were not refined. The final cycles of least-squares refinement included 60 atoms and 281 parameters. $R=0.065, w R=0.063$, goodness of fit $=2.41$ and $w=1 / \sigma^{2}\left(F_{o}\right)$. The maximum shift/e.s.d. ratio in the final cycle was 0.031 ; the final difference map showed no chemically significant features and no peak higher than $0.22 \mathrm{e} \AA^{-3}$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). Atomic coordinates are given in Table 1.* Details of the molecular geometry are given in Table 2. Fig. 1 is a view of the molecule prepared using ORTEPII (Johnson, 1976).

Related literature. Camphor-based chiral auxiliaries have proved to be very powerful chiral adjuvants in organic synthesis (Helmchen \& Wierschokuski, 1984; Oppolzer, 1987). The Bouveault-Blanc reduction of the benzylidenecamphors and fractional crystallization of the p-nitrobenzoate ester of the 3-endo-2-exo isomer provides multigram quantities of the 3-endoarylmethylisoborneol, which we propose to use as a chiral auxiliary and as a platform for the development of chiral reagents. This procedure is simpler than the method of Richer \& Rossi (1972). The compound adopts a conformation in the crystal in which the planes of two aromatic rings are as close to parallel as possible; the key bond torsion angles are $\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 18$ 109.3 (6), $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11-$ C12 178.1 (7) and C3-C11-C12-C17 115.4 (7) ${ }^{\circ}$. This conformation cannot be explained on the basis of crystal packing constraints because the two close approaches between molecules occur in a region

[^2]Table 1. Atomic coordinates and equivalent isotropic thermal parameters (\AA^{2})
$B_{\text {eq }}$ is the mean of the principal axes of the anisotropic mean square displacement tensor.

	x	y	z	$B_{\text {eq }}$
01	0.9083 (3)	0.8512 (2)	0.2180 (6)	5.0 (2)
O2	1.1270 (5)	1.0243 (2)	-0.1126 (9)	8.9 (3)
03	1.0227 (3)	0.8349 (2)	-0.0230 (7)	6.3 (2)
04	1.3341 (4)	0.8948 (2)	0.8159 (8)	7.7 (3)
O5	1.4519 (4)	0.8715 (2)	0.6089 (7)	7.2 (3)
N	1.3565 (5)	0.8790 (2)	0.6596 (9)	5.7 (3)
Cl	0.7474 (5)	0.7956 (2)	0.1604 (8)	4.9 (3)
C2	0.8089 (4)	0.8441 (2)	0.1038 (8)	4.2 (3)
C3	0.7273 (4)	0.8864 (2)	0.1512 (9)	4.5 (3)
C4	0.6215 (4)	0.8569 (2)	0.2082 (9)	4.8 (3)
C5	0.5758 (5)	0.8303 (3)	0.035 (1)	5.9 (3)
C6	0.6627 (5)	0.7886 (2)	-0.000 (1)	5.6 (3)
C7	0.6704 (5)	0.8133 (2)	0.3247 (9)	5.0 (3)
C8	0.7319 (5)	0.8290 (3)	0.4997 (9)	6.5 (4)
C9	0.5862 (6)	0.7733 (3)	0.3859 (9)	7.0 (4)
$\mathrm{Cl0}$	0.8205 (5)	0.7505 (3)	0.195 (1)	6.8 (4)
$\mathrm{Cl1}$	0.7144 (5)	0.9259 (2)	-0.004 (1)	5.5 (3)
Cl^{2}	0.8218 (5)	0.9526 (2)	-0.040 (1)	5.2 (3)
C13	0.8733 (7)	0.9811 (3)	0.099 (1)	7.4 (4)
C14	0.9717 (7)	1.0056 (3)	0.070 (1)	7.6 (4)
C15	1.0272 (6)	1.0006 (3)	-0.097 (1)	6.8 (4)
C16	0.9798 (6)	0.9733 (3)	-0.241 (1)	6.6 (4)
C17	0.8773 (6)	0.9493 (3)	-0.206 (1)	6.2 (4)
C18	1.0074 (5)	0.8452 (2)	0.141 (1)	4.7 (3)
C19	1.0971 (5)	0.8532 (2)	0.2796 (9)	4.6 (3)
C20	1.2068 (5)	0.8497 (3)	0.2205 (9)	5.6 (3)
C21	1.2918 (5)	0.8574 (3)	0.346 (1)	5.6 (4)
C22	1.2664 (5)	0.8696 (2)	0.5280 (9)	4.3 (3)
C23	1.1596 (5)	0.8726 (3)	0.5926 (9)	5.2 (3)
C24	1.0745 (5)	0.8640 (2)	0.4655 (9)	4.9 (3)
C25	1.1878 (6)	1.0178 (3)	-0.283 (2)	9.4 (5)

Table 2. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$

$\mathrm{Ol}-\mathrm{C} 2$	1.468 (7)	$\mathrm{C5}-\mathrm{C} 6$	1.55 (1)
$\mathrm{Ol}-\mathrm{Cl} 18$	1.328 (7)	C7-C8	1.513 (9)
O2-C15	1.369 (9)	C7-C9	1.540 (9)
O2-C25	1.43 (1)	$\mathrm{Cl1}-\mathrm{Cl}^{2}$	1.504 (9)
O3-C18	1.217 (8)	C12-C13	1.40 (1)
O4-N	1.223 (9)	C12-C17	1.37 (1)
$\mathrm{OS}-\mathrm{N}$	1.227 (8)	C13-C14	1.37 (1)
$\mathrm{N}-\mathrm{C} 22$	1.461 (9)	C14-C15	1.38 (1)
$\mathrm{Cl}-\mathrm{C} 2$	1.549 (9)	C15-C16	1.39 (1)
$\mathrm{Cl}-\mathrm{C} 6$	1.548 (9)	C16-C17	1.42 (1)
$\mathrm{Cl}-\mathrm{C} 7$	1.571 (8)	C18-C19	1.484 (9)
$\mathrm{Cl}-\mathrm{Cl} 10$	1.514 (9)	C19-C20	1.396 (8)
C2-C3	1.539 (8)	C19--C24	1.385 (9)
C3-C4	1.558 (8)	$\mathrm{C} 20-\mathrm{C} 21$	1.38 (1)
C3-C11	1.54 (1)	C21-C22	1.38 (1)
C4-C5	1.53 (1)	C22-C23	1.375 (9)
C4-C7	1.548 (9)	C23-C24	1.392 (9)
$\mathrm{C} 2-\mathrm{Ol}-\mathrm{Cl} 8$	119.6 (5)	C4-C7-C9	114.9 (5)
$\mathrm{C} 15-\mathrm{O} 2-\mathrm{C} 25$	117.8 (7)	C8-C7-C9	106.5 (5)
$\mathrm{O} 4-\mathrm{N}-\mathrm{O} 5$	122.3 (6)	C3-Cl1-Cl2	111.0 (5)
$\mathrm{O} 4-\mathrm{N}-\mathrm{C} 22$	118.7 (6)	$\mathrm{Cl1-C12-C13}$	121.6 (6)
$\mathrm{O}-\mathrm{N}-\mathrm{C} 22$	119.0 (6)	$\mathrm{Cl1-C12-C17}$	122.9 (7)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	102.9 (5)	C13-C12-C17	115.5 (6)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7$	103.3 (5)	C12-C13-Cl4	122.9 (7)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Cl} 0$	115.2 (5)	C13-C14-C15	120.4 (7)
C6-C1-C7	101.3 (5)	O2-C15-C14	117.1 (8)
C6-Cl-C10	114.2 (5)	$\mathrm{O} 2-\mathrm{Cl} 5-\mathrm{Cl} 6$	123.3 (8)
C7-Cl-C10	117.8 (5)	C14-Cl5-C16	119.6 (7)
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{Cl}$	110.7 (5)	$\mathrm{Cl5}-\mathrm{Cl} 5-\mathrm{Cl} 7$	117.9 (7)
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{C} 3$	107.9 (4)	C12-C17-C16	123.8 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	104.2 (4)	$\mathrm{Ol}-\mathrm{Cl} 8-\mathrm{O} 3$	124.2 (6)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	102.4 (5)	$\mathrm{Ol}-\mathrm{Cl} 8-\mathrm{C} 19$	111.6 (5)
C2-C3-C11	114.1 (5)	O3-C18-C19	124.2 (6)
C4-C3-C11	116.9 (5)	C18-C19-C20	119.0 (6)
C3-C4-C5	108.7 (5)	C18-C19--C24	121.6 (5)
C3-C4-C7	101.9 (4)	C20-C19--C24	119.4 (6)
C5-C4-C7	103.0 (5)	C19-C20-C21	120.2 (6)
C4-C5-C6	102.6 (5)	C20-C21-C22	118.8 (6)
$\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$	104.0 (5)	$\mathrm{N}-\mathrm{C} 22-\mathrm{C} 21$	118.8 (6)
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 4$	93.0 (5)	$\mathrm{N}-\mathrm{C} 22-\mathrm{C} 23$	118.4 (6)
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 8$	114.1 (5)	C21-C22-C23	122.8 (6)
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 9$	113.2 (5)	C22-C23-C24	117.9 (6)
C4-C7-C8	115.0 (5)	C19-C24-C23	120.8 (6)

Fig. 1. ORTEPII (Johnson, 1976) view of 3-endo-(p-methoxybenzyl)isobornyl p-nitrobenzoate. Thermal ellipsoids are scaled to 50% probability.
remote from the critical atoms (C3 and C11). The C 6 -endo H atom of one molecule approaches the C 8 methyl H atoms of the adjacent molecule at $1+z$ at 2.09 (2) \AA, significantly less than the sum of the van der Waals radii of the H atoms (Pauling, 1960). The ${ }^{1} \mathrm{H}$ NMR spectrum of the ester is consistent with the view that the solution conformation of the molecule is identical to the crystal conformation. ${ }^{1} \mathrm{H}$ NMR analysis of the conformations of the alcohol and its esters (Seo, Suh, Jensen, Lewis, Wall \& Jacobson, 1992) reveals that esterification of the hydroxyl group causes a conformational change such that the p-methoxyphenyl group moves from a position where the $\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl} 1-\mathrm{Cl} 2$ torsion angle is approximately 120° to a position where it is approximately 180°, a change which we attribute to the favorable through-space interaction between the ester carbonyl group and the electron-rich p-methoxyphenyl ring. This is confirmed by the X-ray crystal structure determination.

The authors gratefully acknowledge the financial support of this work, in part, by the Robert A. Welch Foundation (DEL; Grant \#AA-936), the National Science Foundation (DEL; Grant \#STI8902066) and the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division (RAJ; contract W-74-5-Eng-82).

References

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Helmchen, G. \& Wierschokuski, R. (1984). Angew. Chem. Int. Ed. Engl. 20, 60-61.
House, H. O. (1972). Modern Synthetic Reactions, 2nd ed., pp. 152-160. New York: Benjamin.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Oppolzer, W. (1987). Tetrahedron, 43, 1969-2004, and references therein.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 257-264. Ithaca, New York: Cornell Univ. Press.

Richer, J.-C. \& Rossi, A. (1972). Can. J. Chem. 50, 1376-1385. Seo, B.-I., Suh, I.-H., Jensen, W. P., Lewis, D. E., Wall, L. K. \& Jacobson, R. A. (1992). Tetrahedron Asymmetry, 3, 367-370.

Seo, B.-I., Wall, L. K., Lee, H., Buttrum, J. \& Lewis, D. E. (1993). Synth. Commun. 23. In the press.

Wall, L. K. (1990). MS Thesis. Baylor Univ., Waco, Texas, USA.

Acta Cryst. (1993). C49, 565-567

Structure of a Highly Potent Anxiolytic Dipeptoid

By T. Debaerdemaeker
Sektion für Röntgen- und Elektronenbeugung, Universität Ulm, D-7900 Ulm, Germany
and T. Heigl and K. Steiner
Chemische Forschung und Entwicklung, GÖDECKE AG, D-7800 Freiburg, Germany

(Received 30 November 1991; accepted 28 May 1992)

Abstract

R-\left(R^{*}, R^{*}\right)\right]-4-[[2-[[33-(1 H\)-Indol-3-yl)-2-me-thyl-1-oxo-2-[(tricyclo[3.3.1.1 $\left.1^{3,7}\right]$ dec-2-yloxy)carb-onyl]amino]propyl]amino]-1-phenylethyl]amino]-4oxobutanoic acid, $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6}, M_{r}=614.748$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=13.341$ (2),$\quad b=13.643$ (2), $c=18.222(2) \AA, \quad V=3316.61 \AA^{3}, \quad Z=4, \quad D_{m}=$ $1.24, \quad D_{x}=1.23 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha \quad$ radiation, $\lambda=0.71069 \AA, \quad \mu=0.050 \mathrm{~mm}^{-1}, \quad F(000)=1312$, room temperature, $R=0.0497$ for 5121 observed reflections. The analysis confirms the expected ($11 R, 17 R$) configuration. In addition, four hydrogen bonds (one intra- and three intermolecular) are identified.

Experimental. The dipeptoid (internal code CI-988, free acid) was synthesized in a ten-step synthesis starting from $\mathrm{D}-(-)$-2-amino-2-phenylethanol and $\mathrm{D}-\alpha$-methyltryptophan methyl ester according to a procedure developed by Horwell et al. (1991). Prismatic colourless crystals $(0.2 \times 0.2 \times 0.4 \mathrm{~mm})$ were obtained by dissolving 300 mg of CI-988 (free acid) in 60 ml ethyl acetate at 348 K . The solution was cooled slowly from 345 to 293 K during 108 h (LAUDA RKS/RK20, LAUDA PM351). The crystals were dried in vacuum at 303 K .

0108-2701/93/030565-03\$06.00

Table 1. Final fractional coordinates and equivalent isotropic thermal parameters (\AA^{2})

	x	y	z	$U_{\text {eq }}$
$\mathrm{N}(1)$	0.6931 (1)	-0.2760 (1)	0.9902 (1)	0.055 (2)
C(2)	0.6200 (2)	-0.2078 (1)	0.9742 (1)	0.050 (2)
C(3)	0.5580 (1)	-0.1952 (1)	1.0330 (1)	0.038 (1)
C(4)	0.5633 (1)	-0.2832 (1)	1.1602 (1)	0.045 (2)
C(5)	0.6150 (2)	-0.3526 (2)	1.2001 (1)	0.057 (2)
C(6)	0.7005 (2)	-0.3999 (2)	1.1697 (1)	0.060 (2)
C(7)	0.7316 (1)	-0.3799 (1)	1.1005 (1)	0.054 (2)
C(8)	0.6794 (1)	-0.3094 (1)	1.0599 (1)	0.043 (2)
C(9)	0.5947 (1)	-0.2600 (1)	1.0894 (1)	0.037 (1)
$\mathrm{C}(10)$	0.4695 (1)	-0.1275 (1)	1.0396 (1)	0.040 (1)
C(11)	0.4990 (1)	-0.0210 (1)	1.0601 (1)	0.034 (1)
C(12)	0.5671 (1)	-0.0197 (1)	1.1283 (1)	0.043 (2)
C(13)	0.4049 (1)	0.0396 (1)	1.0782 (1)	0.035 (1)
$\mathrm{O}(14)$	0.3238 (1)	0.0003 (1)	1.0938 (1)	0.049 (1)
$\mathrm{N}(15)$	0.4184 (1)	0.1371 (1)	1.0815 (1)	0.039 (1)
C(16)	0.3365 (2)	0.2039 (1)	1.1002 (1)	0.045 (2)
C(17)	0.3078 (1)	0.2711 (1)	1.0356 (1)	0.042 (2)
C(18)	0.3931 (2)	0.3438 (1)	1.0187 (1)	0.054 (2)
C(19)	0.4023 (4)	0.4350 (2)	1.0572 (2)	0.095 (5)
C(20)	0.4917 (4)	0.4924 (3)	1.0421 (3)	0.103 (5)
C(21)	0.5593 (3)	0.4657 (4)	0.9947 (2)	0.096 (5)
C(22)	0.5512 (2)	0.3826 (3)	0.9578 (2)	0.087 (4)
C(23)	0.4688 (2)	0.3211 (2)	0.9697 (2)	0.064 (3)
N(24)	0.2814 (1)	0.2130 (1)	0.9716 (1)	0.038 (1)
C(25)	0.2097 (1)	0.2400 (1)	0.9245 (1)	0.044 (2)
O(26)	0.1555 (1)	0.3120 (1)	0.9348 (1)	0.069 (2)
C(27)	0.2001 (2)	0.1786 (1)	0.8559 (1)	0.047 (2)
C(28)	0.2087 (3)	0.2440 (2)	0.7895 (1)	0.066 (3)
C(29)	0.2075 (2)	0.1938 (1)	0.7158 (1)	0.045 (2)
$\mathrm{O}(30)$	0.2255 (2)	0.2377 (1)	0.6597 (1)	0.079 (2)
O(31)	0.1836 (2)	0.1010 (1)	0.7177 (1)	0.069 (2)
N(32)	0.5546 (1)	0.0246 (1)	0.9995 (1)	0.037 (1)
C(33)	0.5085 (1)	0.0505 (1)	0.9369 (1)	0.036 (1)
$\mathrm{O}(34)$	0.4179 (1)	0.0441 (1)	0.9261 (0)	0.039 (1)
$\mathrm{O}(35)$	0.5745 (1)	0.0871 (1)	0.8877 (0)	0.048 (1)
C(36)	0.5323 (1)	0.1159 (1)	0.8160 (1)	0.045 (2)
C(37)	0.6115 (3)	0.1803 (2)	0.7792 (1)	0.067 (3)
C(38)	0.5109 (1)	0.0262 (2)	0.7690 (1)	0.052 (2)
C(39)	0.6079 (2)	-0.0295 (2)	0.7528 (2)	0.068 (3)
C(40)	0.6824 (2)	0.0369 (2)	0.7129 (1)	0.064 (3)
C(41)	0.6374 (2)	0.0731 (3)	0.6413 (1)	0.071 (3)
C(42)	0.5431 (2)	0.1295 (3)	0.6572 (1)	0.072 (3)
C(43)	0.5634 (3)	0.2165 (2)	0.7063 (2)	0.087 (4)
$\mathrm{C}(44)$	0.7059 (2)	0.1240 (3)	0.7631 (1)	0.073 (3)
C(45)	0.4664 (2)	0.0630 (3)	0.6963 (1)	0.081 (4)

D_{m} was determined by the flotation method. Intensity data were collected with an automatic Philips PW1100 four-circle diffractometer with graphite monochromator, using 2θ scans to $2 \theta_{\max }=50^{\circ}$. Cell parameters were determined by least-squares fit of 88
© 1993 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, bond distances and angles, and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55612 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1011]

[^1]: * To whom correspondence should be addressed.

[^2]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55592 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR1009]

